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Estimating Residual Fault Hitting Rates by Recapture Sampling

Rajan Gupta

Larry Lee*

Department of Mathematics and Statistics

Old Dominion University
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SUMMARY

For the recapture debugging design introduced by Nayak (1988) we consider the prob-

lem of estimating the hitting rates of the faults remaining in a system. In the context of a

conditional likelihood, moment estimators are derived and are shown to be asymptotically

normal and fully efficient. Fixed sample properties of the moment estimators are com-

pared, through simulation, with those of the conditional maximum likelihood estimators.

Properties of the conditional model are investigated such as the asymptotic distribution of

linear functions of the fault hitting frequencies and a representation of the full data vector

in terms of a sequence of independent random vectors. It is assumed that the residual

hitting rates follow a log linear rate model and that the testing process is truncated when

*This research was supported by the National Aeronautics and Space Administration,

under contract NAG-I-835.



the gaps between the detection of new errorsexceed a fixed amount of time.

Key words :Recapture Sampling; Software Reliability;Fault Hitting Rates; Asymptotic

efficiency;Conditional Likelihood; Average Information; Interval Censored Sampling.

1. INTRODUCTION

Recapture sampling was introduced by Nayak (1988) as a way to get extra information

for estimating the number of faultsremaining in a system. By placing counters in the

software we observe, in addition to the usual sequence of failure(i.e.,errordetection) times,

the hittingfrequenciesof detected faults.Nayak's (1988) discussion concerns the Jelinski-

Moranda (1972) model and procedures useful for estimating the number of remaining

faults.

The present paper dealswith the problem ofestimating the residualfaulthittingrates

under a more flexibleform of the model. Let Ai be the hittingrate of the faultsremaining

in a system when i- 1 faultshave been corrected. Since eliminating faults improves

reliability,we have Ax > A2 >. and the effectsof correcting the first,second, etc.,

detected faultscan be defined by _i = Ai -Ai+I. To model the failuretimes Tx,T2, ...,we

assume that the failuregaps _ ---Ti - Ti-l, (To - 0) are independent and exponentially

distributedwith rate parameters Ai; note that Y/can be interpretedas the smallest of the

times of encountering the remaining faults.As for Nayak's (1988) model, counts {Mi(t)} of

repeated error occurrences are assumed to be independent homogeneous Poisson processes

with rate parameters _i.

In attempting to get consistent estimators of the Ai, the following difficultiesarise:

(i)the likelihoodfunction based on the ordered failuretimes and hittingfrequencies isnot
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indexed by a measure of the amount of information and (ii) the number of parameters

increases in proportion to the amount of information.

In view of (ii) we study estimation under the following model:

8>0 (1)

i= I,2,...

This model yields a tractable form of the likelihood function and is considerably more

flexible than Jelinski-Moranda (1972) model. The latter model Ai = (v - i + 1)¢, i =

1, 2, ..., v, ¢ > 0 assumes a common rate, _i = ¢. Empirical evidence indicates, however,

that faults may have different hitting rates (Nagel, Scholz, Skrivan, 1984). The effects of

correcting faults will typically decrease since faults having the highest hitting rates are

likely to be detected early during the debugging process.

The full likelihood function is presented in Section 2. This likelihood, however, is

not indexed by a measure of the amount of information so we consider in Section 3, a

conditional likelihood obtained by conditioning on the observed number of detected faults.

In this case the sufficient statistic can be represented as a sum of independent noniden-

tically distributed random vectors. Using this representation, we show in Section 4 that

certain moment estimators are asymptotically normal and fully efficient. In Section 4 we

also consider estimating on upper bound for Ar+l where r is the number of faults even-

tually corrected. Fixed sample properties of the moment estimators and the conditional

maximum likelihood estimators are evaluated, through simulation, in Section 5.
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2. NOTATION AND OTHER PRELIMINIARIES

Suppose a system is tested until the failure gaps first exceed a fixed amount of time s.

We observe T1, T2, ..., TR where R, the number of faults eventually detected, is determined

by truncating Y_ = T_ -T_-l,i = 1, 2,... over the interval (0, 8). That is, data is obtained

through an interval censoring model in which we observe the realization R = r providing

Y_ <_ s,i= 1,2,...,r andYr+l > 8 . The total test time r = _-_Yi+8 is then random

while for Nayak's (1988) censbring model, r is a fixed time of testing.

Since Y1,Y2,..., are assumed to be independent exponential random variables, the

joint density function of (R, II1, Y2,..., YR) is

r

f(yl,Y2,...,yr;r) =exp(-Ar+lS) l-I A, exp(-A,Y,), 0<y,<s,i--1,2,...,r (2)
i=1

Explicit formulas for the case r = 0, will be omitted since if r -- 0, there is little information

available for inference.

Recall that counts {Mi(t)} of repeated error occurrences are assumed to be indepen-

dent Poisson processes with rate parameters _. For the fault detected at time t_ let M_

be the number of times this fault is accessed during the interval (t_,_']. Given tl,t2, ...,tr

the vector (M1, M2, ..., Mr) consists of independent Poisson random variables with means

- t ),i = 1,2,...,r.

The joint density of CR, Y1, Y2, ..., YR, MI, M2,..., MR) is

r

exPC-Ar+lS) H A/exp(-A/y/)
i=l

r r

= exp(--Alr) H Ai[_,(

i=1 j=i+l

r r

yJ+ YJ
i=1 j=i+l j=i+l

(3)



Under (1) the likelihood function given by (3) is maximized by

1

_r I"

= In{1 + _ rni/[_(i- 1)mi + r(r - 1)/2]}
1 1

However, since this likelihood is not indexed by a measure of the amount of information,

the asymptotic properties of these estimators cannot be deduced from the form of the

likelihood.

3. A CONDITIONAL LIKELIHOOD

Under the censoring model of Section 2, the conditional density of Y1, Y2,..., Yr, given

R = r, is

I-[ Aiexp(-Aiyi)[1 - exp(-Ais)] -I,

i--I

O < yi < s; i:l,2,...,r (4)

Consider the sequence defined by

Z'I = (Yl), Zk = (Yk,Mlk,M2k,... ,M(k-1)k) (k : 2,3,...,r + 1) (s)

where Mik, i < k, is the number of repeated occurrences of error i during the interval

(Tk-x,Tk] and, for convenience, we let Yr+l = s. The last interval (T,,r] has fixed length

s while (Tk-l,Tk], k < r, has random length Yk. Our earlier assumption that {M_(t)} are

independent homogeneous Poisson processes implies that {M_k}, i < k, k = 2, 3, ..., r + 1

are conditionally, given I"1, }'2, .-., YR and R, independent Poisson random variables with

means _iYk.
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Since counts of events occurring in different intervals are independent and the interval

lengths are also independent, it follows that Z1, Z2, ..., Zr+l are conditionally, given R = r,

independent with densities

gk(Yk; rnlk, m2k, . . . , roCk- 1)k)

k-1

= e- ks) -1 1-I( ,yk)m'ke- '  lm kt (k= 1,2,...,r)
i=l

F

= H(_,s)m",+ ', e-_"lmi(,+,)l (k =r + 1) (6)
i=1

Substituting our model for Ai and _i in (6) and simplifying by using _--_=1 _i = A1-Ak,

gives the conditional log likelihood

k-1 k-1 k-1

lk : Ck(ol,_) + /n(1 --e -E) E mik+ lno_ E rnik -- _ E(i-- 1)rnik -- c_yk + C
i=1 i=1 i=l

(7)

Here C does not depend upon (a,_), and

Ck(a,l_) = lna-- _(k- 1) -ln{1 - exp[-ase-_(k-1)]}

= ase -[3r (k = r + 1)

(k = 1,2,...,r)

In terms of Ak, Ck(a,/_) = /n[Ak(1 --e-'X_')-l], k = 1,2,...,r and Cr+l(a,/_) = A_+lS.

Let Vk = (Vlk,V2k,Vsk), k = 1,2,...,r + 1 be defined by

k-1 k-1

Vlk : Yk, V2k = E M,k, V3k = E(i- 1)M,k (8)
i=1 i:l

where, as before, Yr+l "- 8. In reference to lk in (7) and the full conditional likelihood

lc = _-_+1 lk note the following:

(i) V1, V2, ..., Vr+l are independent.

(ii) Vk is a minimal sufficient statistic for lk.
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(iii) Sr -- _+1 Vk is a sufficient statistic for the family defined by It.

(iv) S r ----- (Slr, S2r, S3r ) is given by Sir = r, S2r = )--_lMi, S3r = _-_1(i- 1)Mi

To study the asymptotic distribution of St, we shall need the following :

THEOREM 1. Let Vk be det_ned as in (8) where (Yk,Mlk,M2k,...,M(k-t)k), k = 1,2,

... ,r + 1 are independent with densities (7). Let the means, variances and covariances

of the elements of Vk be denoted by #ik = E(Vik) ;i = 1,2,3 and oijk = Cov(Vik,Vjk);

i,j = 1,2,3. Then

#1_ = _-1 _ _(e_ _ 1)-1

_3k : I_lkak

0"12k : a11k(_1 -- _k)

o22k = _1k(_1 - _k) + al_k(_l - _k) 2

a33k :/Zlkb k + ¢Xllka_

k-1

ak = E(i- 1)_,
i=1

#1(r+1) = 3

a11k = _-2 _ 82e_ks(e_k8 _ 1)--2

al3k = Ullkak

O'23k : glkak + O'llk()_l -- _k)ak

k-1

i=1

0"11(r+1 ) ---- 0

PROOF: The mean /_lk and variance allk of Yk can be obtained directly from the fact

that Yk has an exponential distribution truncated over the interval (0,s). Since V2k is

k--1
conditionally, given Yk, a Poisson random variable with mean Yk )--_i=1 _i = Yk()_l -- Ak),

and Var(V2k) = E[Var(V2k[Yk)] + Var[E(V2k[Yk)] we immediately have the expression

given for a22k. Similar calculations can be made for Vsk by noting that Vak is a linear sum

of the conditionally (given Yk) independent Poisson random variables Mik, i < k. These

being routine calculations, further details are omitted.



The Average Information Matrix:

The second and mixed partial derivatives of/k are as follows :

c?2lk

aaO#

a21_

a# 2

k-i

C1+ _ M,_)_-2 + _2_-2_l_e_'(e_'- i) -2
i----I

.s(k- 1)2_k(e Aka- 1) -1 Jr- s2(k- l)2_eAk'(e _ks

k-I

--ePCe" -- 1)-2 E Mik
i=l

The Fisher Information Matrix Ak -: (aijk), based on lk, is given by

allk : -E( o21k_ a-2

Oq2/k ' -(k 1)O_-1(_U11k "_kfllk)
:12k = -E(-_-_j : -

..,021k,

a22k= -_t-_-_ : (k- 1)2(_2011k-_k_,lk)+ (_1- _k)_'lke_(__ -- 1)-2

To simplify the calculation of these quantities, write the second derivative expressions

in terms of the moments of Yk. For example,

.S2e_ks(e)_ks __ 1)--2 : ,_;2 __U11k

k-I

a21k - -a -2 _ M_- _-2)k_u11k
Oc_2

i:1

Then allk is obtained by using first the moment of V2k given in Theorem 1. Similar

calculations yield the expressions given for al2k and a22k •

Since the distribution of Yk converges (as k ---} oo ) to a uniform distribution on the

interval (0, s) the moments of Yk converge to the corresponding moments of the limit-

ing uniform distribution (Serfling, 1980 p.14). We, therefore, have limk_c¢ Plk ---- s/2,

limk--.oo a11k = 82/12, and limk-.oo (k - 1)_Al¢ = 0 for q = 0, 1, 2. Using these limits to

get the limiting average information matrix A -- lim(1/r)(A1 + A2 +... + A_+I), we have

A: (aij)where all : S/2C_, a12:0, a22 :ase#(e _- 1)-2//2
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4. ESTIMATION

Let & and _ denote estimators of a and/3 defined by

a=
i=1

r r

= ln[1 + _ M,/_(i- 1)M, l
i=1 i=1

Here we derive & and _ by equating (l/r) _-'_1Mi and (l/r) _(i- 1)Mi to the appropriate

mean vector elements of the asymptotic distribution of (1/r)Sr.

THEOREM 2. Under the assumptions of Theorem 1, (1/r)Sr has a limiting (as r tends

to infinity) normal distribution with mean vector _' = (_1, #2, _3) and covariance matrix

(1/r) E, E = (o A, where

_z1 = 8/2

Ull : 82/12 0"12 : _s2/12

a22 : O_S/2 + a2S2/12

0"23 = _(_fl -- 1)-118/2 ÷ _82112]

0"33 : (018/2)[( eft -- i) -I + 2( eft -- 1) -2] + (a2S2/12)( e_ -- I) -2

PROOF: The elements of _ and I] are given by #i lim(1/r) _-_r+l= z-_k=l #ik, i = 1, 2, 3 and

_--_r+l0"ij = lirn (l/r) A-,k=l 0"iik as r tends to infinity, where the terms in these sums are the

moments given in Theorem 1. Since Dik and 0"ilk converge to finite limits as k tends to

infinity, we have _i = lirn #ik and 0"ii = tirn 0"iik. Thus the calculations are similar

to those discussed at the end of Section 3. The remainder of the proof requires showing
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(Serfling, 1980, p.30) that

where

r+l

.m(1/r) F_,
k=l

=0 (9)

hat = E[UaI(Uk > e2r)]

3

i=l

(i0)

and I(.) is the indicator function. Since hkr < (e2r)-'E(U2), the limit in (9) can be

established by examining the fourth central and product moments of the Vik. Further

details are given in the Appendix.

Note that a = g1(/_I,/_2,_3) and fl : g2(_1,/_2,_3) where gl(Zl,Z2,Z3) = Z2/Zl,

g2(zl, z2,z3) = In(1 + z2/zs), and #' is the mean vector of the asymptotic distribution of

(1/r)Sr. Applying the 6-method gives the following.

COROLLARY 1. Under the assumptions of Theorem 1, & and _ have a limiting (r --+ c¢)

normal distribution with mean vector (a,/9) and are asymptotically independent with

variances aa 2 = 2a/rs, 2 = 2(e" - 1) e-alr ,.

COROLLARY 2. Under the assumptions of Theorem 1, Xq+1 = &e -_q, for fixed q < r + 1,

has a limiting (r --* oo) normal distribution with mean )_q+l and variance

2
aq = (2a/rs)e-2/3q[1 q- 2q2(e/3 -- 1)2e-fl].

By comparing the form of (&,/_) with that of the maximum likelihood estimators given

in Section 2, it is evident that the latter are not consistent. Consistency, however, depends

upon the choice of index for the likelihood function. That is, there may be other ways of
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conditioning (i.e., other families of conditional likelihoods) which imply the consistency of

& and _J .

Corollary 2, gives an asymptotic basis for estimating an upper bound on _+1 but

does not justify directly estimating )_r+l. The hitting frequencies at the upper end of the

vector (M1,M2,...,Mr) will tend to be small (often zero). In such cases, for a suitably

chosen index q < r + 1, )_q+l - )_r+l = _[=q+l _i will tend to be small so that _q+l may

be a close upper bound on Ar+l.

5. EFFICIENCY AND BIAS

Since a_ 2 _-_ (tall) -1 and a_ 2 -- (ra22) -1 where all and a22 are given at the end of

Section 3, it follows that & and _J are asymptotically fully efficient.

To study the fixed sample properties of & and _J, we simulated their values under

the conditional model defined in (6). This was done by generating 1,000 replicates of

Z = (Z1,Z2,...,Z,.+I) for the values of r shown in Table 1. In addition the conditional

maximum likelihood estimates &c and _Jc were calculated for each replicate by maximizing

lc = E1 +1 lk where tk is defined in (7) .

Table 1 shows the bias and mean square error (MSE) for & and _ and also the bias

and MSE for &e and _c. The conditional MLE clearly have smaller bias than & and _ and

thus would probably be preferred in applications.

6. FINAL REMARKS

We have presented procedures that may be useful for estimating an upper bound on

the hitting rate of the faults remaining in the system. There does not seem to be any
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published data where software testing counters have been used, although Nayak (1988)

credits this testing method to Huang (1977). A few studies have used replications of a

debugging sequence and multiple versions of a program to automate the process of error

detection (e.g., Nagel, Scholz, and Skrivan, 1984).

The model in (1) and, more generally, any model in which the _i are defined by

_ = )_i - )q+l, assumes that the effects of correcting faults are additive. If for some input

condition, two or more faults give an error in the output, then the additivity assump-

tion does not hold. Although disjoint fault sets are more common, cases of a nonempty

intersection have been observed experimentally (Nagel, Scholz, and Skrivan, 1984). The

additivity assumption can be preserved by (a) labeling such faults as a single fault and

recording only the hitting frequency of the union of the fault sets or (b) partitioning the

union of these sets into disjoint regions and recording the hitting frequencies as if each

region corresponds to a different fault. The former is a simpler and more practical method

since the hitting frequencies of the common fault regions may tend to be small.

In analyzing data obtained by recapture sampling, it is important to use estimators

that are consistent (i.e., converge in probability to the true parameters). Although consis-

tency is not guaranteed for estimators based on an unconditional likelihood, we have shown

that certain moment estimators, obtained in the context of a conditional likelihood, are

consistent and asymptotically normal; it is likely that the conditional maximum likelihood

estimators are also consistent. Our asymptotic evaluation of the estimators assumes that

the number of detected faults is large. It is, therefore, of interest to determine whether

consistency of these or other estimators will hold when conditioning on other quantities,
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such as the total number (m + r where m = _ m_) of error occurrences.

7. APPENDIX

Before we give the proof of Theorem 2, we require the following moments, which

can be obtained by using (8) where V2k and Vsk are linear function of the conditionally

independent Poisson random variables {M_k).

E[(V2k - #2k) 4] = 3a_E(Y_) + aol_ik + 6a3E[yk(Yk - #lk) 2] + a_E[(Yk -- #,k) 4]

E[(V3k - psk) 41 = 3a_E(Y:) + a4plk + 6a_E[Yk(Yk - P,k) 2] + a_E[(Yk - plk) 4]

2 2
E[(V2_ - _2k)2(Vsk --/_ak) 2] = Cao/_lk + CaoSE[(Yk -/_lk) s] + Cao/_lk

+ Caaol_iks[CYk -/_,k) 2] + (a2/a20)E[CV2k - p2k) 4]

k--1

ap = 1)p , p=0,1,2,3,4
i=1

The limits, as k --* oo, of these moments are finite because (i) the Yk are bounded and

converge in distribution to a uniform distribution on the interval (0, s), and (ii) for each

k--1 •
p----0,1,2,3,4, ap ----a(1 - e -_) _/=1 (z - 1)Pe -_(/-1) converges to a finite positive limit as

k -_ oo. Therefore, E(U_) converges to a finite limit where Uk is defined in (10). Thus

as r tends to infinity, the limit in (9) is zero, which proves Theorem 1.
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15 Bias 0.000066 0.005990 -0.011208 0.055903
MSE 0.000196 0.003188 0.000295 0.006629

20 Bias -0.000001 -0.000001 -0.007733 0.041084

MSE 0.000207 0.002241 0.000276 0.004115

25 Bias 0.000057 0.000002 -0.004581 0.032183

MSE 0.000103 0.000680 0.000106 0.001701

30 Bias 0.000000 0.000000 -0.002472 0.022305

MSE 0.000074 0.000789 0.000088 0.001288

Table 1. Bias and mean square error (MSE) of the conditional maximum likelihood esti-

mators &c,/_c and the moment estimators &, ]_ based on 1,000 simulations with a = 0.10

and/_ = 0.35.


